Masonry - how to account for cracking

Some finite element analysis programs do not account for flexural cracking that occurs when the tension component of a flexural bending moment exceeds the rupture capacity of the masonry. Rupture of the masonry greatly reduces the moment of inertia for additional loading beyond the associated cracking moment. Therefore, a reduction in wall stiffness must be included to correctly model the behavior of the masonry wall. Below is an example of how to adjust the properties within the model to accommodate the reduction in wall stiffness.

Given: 8" normal weight CMU wall with \#5 rebar at 32" oc supporting a single bay of steel roof bar joists spanning 20'-0" (assume 4" joist bearing thus e $=7.625 / 2-4 / 2=1.81$ "
wall weight $=51$ psf per NCMA TEK 14-13B
$\mathrm{A}_{\text {net }}=46.0 \mathrm{in}^{2} / \mathrm{ft}$
$\mathrm{S}_{\text {net }}=90.1 \mathrm{in}^{3} / \mathrm{ft} \quad \mathrm{S}_{\text {avg }}=94.6 \mathrm{in}^{3} / \mathrm{ft}$
$I_{\text {net }}=343.7$ in $4 / \mathrm{ft} \quad$ lavg $=360.5 \mathrm{in}^{4} / \mathrm{ft} \quad$ [NCMA TEK 14-1B]
$\mathrm{S}_{\text {net }}$, Inet values for strength capacity
$\mathrm{S}_{\text {avg }}$, lavg values for stiffness and deflection
$\mathrm{f}^{\prime} \mathrm{m}=2500 \mathrm{psi}$
Roof height $=20^{\prime}-0^{\prime \prime}$ with a $3^{\prime}-0^{\prime \prime}$ parapet
Wind Load: $\mathrm{W}_{\mathrm{u}}=30 \mathrm{psf} ; \mathrm{W}_{\mathrm{s}}=0.6(30)=18 \mathrm{psf}$

1. The cracked moment of inertia is influenced by the factored vertical loads bearing on the wall.

Roof Dead Load: $\mathrm{P}_{\mathrm{f}, \mathrm{DL}}=15 \mathrm{psf}\left(20^{\prime} / 2\right)=150 \mathrm{plf} \quad \mathrm{Puf}_{\mathrm{f}, \mathrm{DL}}=1.2$ (150plf) $=180 \mathrm{plf}$
Roof Snow Load: $\mathrm{P}_{\mathrm{f}, \mathrm{LL}}=35 \mathrm{psf}\left(20\right.$ '/2) $=350$ plf $\quad \mathrm{P}_{\mathrm{pf}, \mathrm{LL}}=1.6$ (350plf) $=560 \mathrm{plf}$
Wall Dead Load: $P_{w}=51 p s f\left(20^{\prime} / 2+3^{\prime}\right)=663$ plf $\quad P_{u w}=1.2(663)=796 p l f$

$$
\begin{array}{ll}
\mathrm{P}_{f}=150+350=500 \text { plf } & \mathrm{P}_{\text {uf }}=180+560=740 \text { plf } \\
\mathrm{P}=\mathrm{P}_{\mathrm{w}}+\mathrm{P}_{\mathrm{f}}=1163 \text { plf } & \mathrm{Pu}_{\mathrm{u}}=\mathrm{P}_{\mathrm{uw}}+\mathrm{P}_{\text {uf }}=1536 \text { plf }
\end{array}
$$

2. Calculate distance extreme compression fiber to neutral axis, c
$\mathrm{A}_{\mathrm{s}}=0.31 \mathrm{in}^{2}(12 / 32)=0.116 \mathrm{in}^{2} / \mathrm{ft}$
$f_{y}=60,000 p s i$
$\mathrm{c}=\left(\mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{y}}+\mathrm{P}_{\mathrm{u}}\right) /\left(0.64 \mathrm{f}_{\mathrm{m}} \mathrm{b}\right)=[(0.116)(60,000)+1536] /[0.64(2500)(12)]=0.443 "$
[TMS402-13 Equation 9-35]
3. Calculate gross and cracked moments of inertia, $\mathrm{I}_{\mathrm{g}}, \mathrm{I}_{\mathrm{cr}}$
```
\(\mathrm{Em}=900 \mathrm{f}\) ' \(\mathrm{m}=900(2500)=2,250,000 \mathrm{psi}\)
\(\mathrm{n}=\mathrm{Es} / \mathrm{Em}=29,000,000 / 2,250,000=12.9\)
\(d=7.625 " / 2=3.81^{\prime \prime}\)
\(\mathrm{I}_{\mathrm{g}}=\mathrm{I}_{\text {avg }}=360.5 \mathrm{in} 4 / \mathrm{ft}\) (For stiffness and deflection, use the average values from NCMA)
```

Icr $=n(A s+P u / f y)(d-c)^{2}+b c^{3} / 3 \quad$ (Simplified equation for centered rebar) $\mathrm{I}_{\mathrm{cr}}=12.9[0.116+1536 / 60,000)(3.81-0.443)^{2}+(12)(0.443)^{3} / 3=21.1 \mathrm{in}^{4} / \mathrm{ft}$
[TMS402-13 Equation 9-34]
4. Calculate cracking moment for stiffness, M_{cr}
$\mathrm{f}_{\mathrm{r}}=104 \mathrm{psi} \quad[\mathrm{TMS402-13}$ Table 9.1.9.2]
$M_{c r}=f_{r} S_{\text {avg }}=(104 \mathrm{psi})\left(94.6 \mathrm{in}^{3} / \mathrm{ft}\right)=9838 \mathrm{in} \# / \mathrm{ft}<\mathrm{M}_{\text {ser }}$, use TMS402-13 equation 9-30
5. Calculate service deflection, deltas
[TMS402-13 Section 9.3.5.5.1]
Iteration is required thus start with the assumption: delta ${ }_{s 0}=0$ in

$$
\begin{aligned}
& \mathrm{M}_{\text {ser } 1}=\mathrm{w}_{\mathrm{s}} \mathrm{~h}^{2} / 8+\mathrm{Pfe}_{\mathrm{f}} / 2+\text { Pdelta }_{\mathrm{s} 0}=(18 \mathrm{psf})\left(20^{\prime}\right)^{2}(12) / 8+500 \mathrm{plf}\left(1.81^{\prime \prime}\right) / 2+0=11,253 \mathrm{in} \# / \mathrm{ft}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{M}_{\text {ser2 }}=\mathrm{w}_{\mathrm{s}} \mathrm{~h}^{2} / 8+\mathrm{Pfe}_{\mathrm{f}} / 2+\text { Pdelta }_{\mathrm{s} 1}=11,550 \mathrm{in} \# / \mathrm{ft} \\
& \text { delta }_{\text {s2 }}=5 \mathrm{M}_{\mathrm{cr}} \mathrm{~h}^{2} /\left(48 \mathrm{E}_{\mathrm{m}} \mathrm{lavg}\right)+5\left(\mathrm{M}_{\text {ser2 }}-\mathrm{M}_{\mathrm{cr}}\right) \mathrm{h}^{2} /\left(48 \mathrm{E}_{\mathrm{m}} \mathrm{l}_{\mathrm{cr}}\right)=0.293^{\prime \prime} \\
& \mathrm{M}_{\text {ser } 3}=\mathrm{w}_{\mathrm{s}} \mathrm{~h}^{2} / 8+\mathrm{Pfe}_{\mathrm{f}} / 2+\text { Pdelta }_{\mathrm{s} 3}=11,593 \mathrm{in} \# / \mathrm{ft} \\
& \text { delta } \left._{s 3}=5 \mathrm{M}_{\text {cr }} \mathrm{h}^{2} /\left(48 \mathrm{E}_{\mathrm{m}} \mathrm{l}_{\text {avg }}\right)+5\left(\mathrm{M}_{\text {ser3 }}-\mathrm{M}_{\text {cr }}\right) \mathrm{h}^{2} /\left(48 \mathrm{E}_{\mathrm{m}} \mathrm{l}_{\mathrm{cr}}\right)=0.298 \text { " (within } 2 \% \text { conversion }\right) \\
& \text { delta }_{\mathrm{s}, \max }=0.007 \mathrm{~h}=0.007(240)=1.68^{\prime \prime}>0.298^{\prime \prime} \text { OK }
\end{aligned}
$$

6. Determine adjusted modulus of elasticity ($E_{\text {adij }}$) for equivalent flexure based on lavg (assuming the software accounts for partial grouting)

Using deltacr and deltas,max ${ }_{\text {calculate }}$ a weighted average stiffness for Eadjlavg
delta $_{\text {cr }}=5 \mathrm{Mcr}^{2}{ }^{2} /\left(48 \mathrm{E}_{\mathrm{m}} \mathrm{lavg}\right)=0.076 "$
delta $_{s, \max }=0.298^{\prime \prime}$
$\mathrm{E}_{\text {adj }} \mathrm{lavg}=\mathrm{E}_{\mathrm{m}} \mathrm{lavg}\left(\right.$ delta $_{\mathrm{cr}} /$ delta $\left._{\mathrm{s}, \max }\right)+\mathrm{E}_{\mathrm{m}} \mathrm{l}_{\mathrm{cr}}\left(\right.$ delta $_{\mathrm{s}, \max }-$ delta $\left._{\mathrm{cr}}\right) /$ delta $_{\mathrm{s}, \max }$
Divide each side by lavg
$E_{\text {adj }}=E_{m}\left(\right.$ delta $_{\text {cr }} /$ delta $\left._{s, \text { max }}\right)+E_{m} l_{c r}\left(\right.$ delta $_{s, \text { max }}-$ delta $\left._{\text {cr }}\right) /\left(\right.$ delta $\left._{\mathrm{s}, \text { maxlavg }}\right)=673,979$
To adjust the value of E in the model, typically a multiplier is required, thus multiplier $=\mathrm{E}_{\text {adj }} / \mathrm{E}_{\mathrm{m}}=673,979 / 2,250,000=0.30$

Pros:

- Provides more accurate deflections including Pdelta effects
- Provides more accurate flexural bending moments including Pdelta effects

Cons:

- Reduced modulus of elasticity may adversely affect other portions of the design
- Each masonry wall will require a unique calculation and adjustment factor based on loads
- Separate models may be required for capacity and deflection

